%matplotlib inline
import numpy as np
import pandas as pd
ver=pd.read_csv("ver.csv")
ver.loan_purpose_name.value_counts().plot(kind='barh')
ver.groupby('agency_abbr')['applicant_income_000s'].agg(np.median).plot(kind = 'bar')
g = sns.factorplot("loan_purpose_name", "loan_amount_000s", "agency_abbr", ver, kind="box",
palette="PRGn",aspect=2.25)
g.set(ylim=(0, 600))
sns.factorplot("loan_purpose_name", data=ver, hue="agency_abbr",size=3,aspect=2)
sns.factorplot("loan_purpose_name", "loan_amount_000s", data=ver, palette="BuPu_d")
sns.violinplot(ver["loan_amount_000s"], ver["loan_purpose_name"], color="BuPu_d").set_ylim(0, 800)
sns.despine(left=True);
sns.violinplot(ver["logloanamt"], ver["loan_purpose_name"], color="BuPu_d").set_ylim(0, 10)
sns.despine(left=True);
sns.regplot("logloanamt", "logincome", data=ver, robust=True, ci=95, color="seagreen")
sns.despine();
sns.factorplot("agency_abbr", "loan_amount_000s", data=ver, palette="PuBu_d", estimator=np.median);
sns.factorplot("loan_purpose_name", data=ver, hue="action_taken_name");