[('action_taken', numpy.int64),
('action_taken_name', str),
('agency_code', numpy.int64),
('agency_abbr', str),
('agency_name', str),
('applicant_ethnicity', numpy.int64),
('applicant_ethnicity_name', str),
('applicant_income_000s', numpy.int64),
('applicant_race_1', numpy.int64),
('applicant_race_name_1', str),
('applicant_sex', numpy.int64),
('applicant_sex_name', str),
('census_tract_number', numpy.float64),
('co_applicant_ethnicity', numpy.int64),
('co_applicant_ethnicity_name', str),
('co_applicant_race_1', numpy.int64),
('co_applicant_race_name_1', str),
('co_applicant_sex', numpy.int64),
('co_applicant_sex_name', str),
('county_code', numpy.int64),
('county_name', str),
('hoepa_status', numpy.int64),
('hoepa_status_name', str),
('lien_status', numpy.int64),
('lien_status_name', str),
('loan_purpose', numpy.int64),
('loan_purpose_name', str),
('loan_type', numpy.int64),
('loan_type_name', str),
('owner_occupancy', numpy.int64),
('owner_occupancy_name', str),
('preapproval', numpy.int64),
('preapproval_name', str),
('property_type', numpy.int64),
('property_type_name', str),
('purchaser_type', numpy.int64),
('purchaser_type_name', str),
('hud_median_family_income', numpy.int64),
('loan_amount_000s', numpy.int64),
('number_of_1_to_4_family_units', numpy.int64),
('number_of_owner_occupied_units', numpy.int64),
('minority_population', numpy.float64),
('population', numpy.int64),
('tract_to_msamd_income', numpy.float64),
('logloanamt', numpy.float64),
('logincome', numpy.float64)]